
Program Comprehension in Numbers
and Words Algorithms

Master Thesis
by

Anirudh Adavalli
at

Chemnitz University of Technology
Department of Computer Science

Course of Studies
WEB ENGINEERING

Professor: Dr. Janet Siegmund
Chemnitz University of Technology

Supervisor: MSc. Arooba Aqeel
Chemnitz University of Technology

Chemnitz, April 2021

i

Declaration of Authorship
I hereby declare that this master thesis was independently composed and authored by
myself.

All content and ideas drawn directly or indirectly from external sources are indicated
as such. All sources and materials that have been used are referred to in this thesis.

The thesis has not been submitted to any other examining body and has not been
published.

Place, date

Signed:Anirudh Adavalli

ii

Abstract

Program comprehension is about how programmers comprehend the source code. Since

the past three decades, program comprehension research has yielded a plethora of

theories and methods that have aided in the interpretation and explanation of how

programmers comprehend source code. A better understanding of programmers aids in

developing efficient tools and methods to help the programmer in comprehension tasks

and also teach programming effectively. Various measuring methods, instruments, and

technology have been used to investigate various aspects of program comprehension.

Technologies such as fMRI, Eye-tracking, EEG, etc were used to understand cognitive

processes associated with comprehension. In this thesis work, the difference in

program comprehension of numbers and words algorithms is explored. The correctness

and response time are measured for numbers and words algorithms to observe the

differences. The study is carried out using an online questionnaire platform called SoSci

Survey and to observe the difference in approaches for numbers and words algorithms

a think-aloud study is employed. An online meeting is conducted with the participants

where the participants are expected to verbalize their thoughts while answering the

questionnaire. The responses are collected in the same survey platform. The transcripts

are generated from the audio of the participants. The correctness and response time

for number and words algorithms are formulated from the survey data. Transcripts are

analyzed to gain more insights. The study revealed that there is no difference in the

correctness and response time for identical numbers and words algorithms.

Keywords: Program Comprehension, Numbers and words algorithms, Correctness

and response time, Think-aloud protocol.

iii

Acknowledgements

The successful outcome of this work is not possible without valuable guidance and

assistance from many people who deserve a token of acknowledgment right from my

heart. I would like to thank my supervisor Arooba Aqeel, and my professor, Dr. Janet

Siegmund, for providing me this opportunity and for their support and advice during

the thesis research. I would also like to thank Chemnitz University of Technology for

providing the resources. Lastly, I would like to thank everyone who participated in the

research and provided valuable feedback.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

List of Figures vii

List of Abbreviations viii

1 Introduction 1
1.1 Problem Statement and Motivation . 2
1.2 Objective . 3
1.3 Context . 3
1.4 Thesis Structure . 4

2 Literature Review 6
2.1 Program Comprehension . 6
2.2 Approaches to measure Program Comprehension 7

2.2.1 Recall . 7
2.2.2 Comprehension Tasks . 8
2.2.3 Think-Aloud Protocol . 8

2.3 Program Comprehension Models . 10
2.3.1 Top-down Comprehension Model 11
2.3.2 Bottom-up Comprehension Model 12
2.3.3 Integrated Metamodel . 14

2.4 New approaches to measure Program Comprehension 16
2.4.1 functional Magnetic Resonance Imaging (fMRI) 17
2.4.2 Eye Tracking . 18
2.4.3 Eye tracking studies in Software Engineering 20
2.4.4 fMRI and Eye Tracking . 24

3 Experiment Planning 26
3.1 Goals . 28
3.2 Participants . 29
3.3 Experiment Material . 30

3.3.1 Code Snippet Creation . 31
3.3.2 Code Snippets Selection Criteria 32

3.4 Tasks . 34

v

3.5 Tools and Technologies used . 35
3.6 Experiment Design . 37

3.6.1 Experiment setup . 38
3.7 Analysis Procedure . 45

4 Conduct 47
4.1 Participants Briefing . 47
4.2 Procedure . 48
4.3 Data Collection . 50

5 Data Analysis and Results 54
5.1 Data Set Preparation . 54
5.2 Hypothesis Testing . 55
5.3 Results . 56

5.3.1 Data . 57
5.3.2 Data Visualization . 60

6 Discussion 64
6.1 Threats to validity . 65

7 Conclusion and Future Work 67
7.1 Conclusion . 67
7.2 Future work . 68

Bibliography 69

A Questionnaire 73

vi

List of Figures

1.1 Thesis Structure . 5

2.1 Top-down Comprehension Model . 12
2.2 Bottom-up comprehension model . 13
2.3 Integrated Metamodel . 15
2.4 Experiment setup for fMRI study . 18
2.5 Fixations and Saccades . 20
2.6 Eye tracking studies in program comprehension 21
2.7 Crosby and Stelovsky study on code comprehension 21
2.8 Crosby et al. study on code comprehension 22
2.9 Bednarik and Tukiainen study on code comprehension 22
2.10 Busjahn et al. study on code comprehension 23
2.11 Sharafi et al. study on code comprehension 23
2.12 Busjahn et al. study on code comprehension 2014 24
2.13 Simultaneous fMRI and Eye Tracking study setup 25

3.1 Algorithm to remove duplicate elements in a number array 33
3.2 Algorithm to remove duplicate elements in a string array 34
3.3 SoSci Survey Controls . 40
3.4 SoSci Survey project home page . 41
3.5 SoSci Survey List of questions . 41
3.6 SoSci Survey Questionnaire Template 42
3.7 OBS tool user interface . 44

4.1 SoSci Survey "View Data set" tab . 51
4.2 Participants Demographic Data . 53

5.1 Correctness of Numbers and Words Algorithms Data Table 57
5.2 Response time of Numbers Algorithms Data Table 58
5.3 Response time of Words Algorithms Data Table 58
5.4 Correctness of Numbers and Words algorithms 61
5.5 Correctness of Numbers algorithms Vs. Words algorithms 62
5.6 Average response time for each Numbers and Words algorithm 63
5.7 Average response time for Numbers Vs. Words algorithms 63

A.1 Consent page of the questionnaire . 73
A.2 Comprehension task Numbers algorithm 74
A.3 Distraction algorithm one . 75
A.4 Distraction algorithm two . 76
A.5 Comprehension task Words algorithm 77

vii

A.6 Demographic questions . 78
A.7 Experience and Skill questions . 79

viii

List of Abbreviations

BOLD Blood Oxygenation Level Dependent
DV Dependent Variable
EEG Electroencephalogram
fMRI functional Magnetic Resonance Imaging
fNIRS functional Near - Infrared Spectroscopy
FIFO First In First Out
IV Independent Variable
LRU Least Recently Used
MRI Magnetic Resonance Imaging
MV Mitigating Variable
OBS Open Broadcaster Software

1

Chapter 1

Introduction

Program comprehension or code comprehension describes the process of how developers

comprehend source code, it is a vital human element in software engineering. Program

comprehension is the primary activity of software developers. It is an important

cognitive process in software development as developers spend most of their time

understanding source code [1].

A better understanding of the cognitive process involved in programming would help

in determining better ways of teaching programming, understanding what teaching

practices would affect program comprehension of programmers. Also, it helps in the

design and development of efficient programming languages and software tools that aid

the developers in their day-to-day lives and supports them in writing better software

[2].

The study on program comprehension is been carried out for 30 years. In the earlier

days of research on program comprehension, researchers used various approaches like

Memorization, Think-Aloud Protocol, and Comprehension tasks to measure program

comprehension. These studies led to the program comprehension models such as

Top-Down Comprehension, Bottom-Up Comprehension, and Integrated models [3].

Since the 1990s, researchers have used techniques like neuro-imaging and eye-tracking

to gain more insights into programmers brains. Siegmund, Janet, et al used fMRI for

the first time to study program comprehension where they found that Brodmann areas

6, 12, 40, 44, and 47 of brain are activated while program comprehension. Other

Chapter 1. Introduction 2

researchers have also used near-infrared spectroscopy and electroencephalography

(EEG) to study program comprehension [4] [3].

1.1 Problem Statement and Motivation

With over 3 decades of research on program comprehension, a number of theories,

models, and tools have emerged which describe how programmers think while they

are trying to understand source code. To understand program comprehension better

insights into the underlying cognitive process have to be obtained. Even with a

significant amount of research, little is known about the cognitive process associated

with program comprehension. Thus it is becoming difficult for researchers to suggest

appropriate coding conventions, tools, and programming languages to aid developers

in their day-to-day work. If the programming tasks and the amount of cognitive effort

can be calculated and linked, it could be possible to determine which types of problem

solving, activities, and code segments are difficult for programmers. Such identification

would help in improving training methods, education and developing programming

languages and tools to for programmers [3] [2] [4] [5].

Considering the theories models and tools that have evolved over the period of time

in program comprehension, the motivation behind this study is to understand the

behavior of programmers for numbers and words in programming. This study will help

in understanding if the programmers perceive the numbers and words differently in

programming. The differences in the amount of effort and the difference in approach

for tackling the number and words can be observed from the results of this study.

The differences in the correctness of responses and response time for numbers and

words are the two factors considered to be observed in this study. The design of

the study includes an experiment that needs to be conducted with participants who

have a computer science background. The study focus on understanding the difference

in the behavior of the programmers for number and words, while the programmers

solving small code snippets. The problem statement this study address is whether

Chapter 1. Introduction 3

there would any differences in programmers behavior for numbers and words. The

study was initially intended to be conducted with the help of a web-based eye-tracking

technology but another approach "think-aloud protocol" had to be used to observe

the participants approach towards numbers and words. Due to the pandemic and

restrictions on human contact, the experiment is designed to be conducted online. An

online survey tool called "SoSci Survey" is used to conduct the experiment.

1.2 Objective

The objective of this thesis is to study the behavioral differences in programmers while

they are comprehending the numbers and words algorithms.

Based on the above objective the following two research questions are addressed in this

thesis work.

1. RQ1: Does the correctness of programmers differ for numbers and words

algorithms?

2. RQ2: Does the response time of programmers differ numbers and words

algorithms?

Initially, the study is intended to be conducted with an eye tracking; however, a think

aloud protocol is used to observe the differences in the subjects approach to tackle the

tasks instead of eye tracking.

1.3 Context

An online survey will be conducted with 12 participants from the field of computer

science. Participants will be asked to take an online survey. Individual participants

will be invited to an online meeting. Participants are given a link to the survey, which

consists of questionnaires on comprehension tasks to be answered while verbalizing

their thoughts. Their voices and screen were recorded during the meeting session using

Chapter 1. Introduction 4

a screen recorder so that transcripts can be produced. These transcripts and responses

will be analyzed to generate meaningful data that will help prove the hypothesis.

1.4 Thesis Structure

This section highlights the contents of each chapter in this thesis report. The figure

1.1 presents the chapters and sub-sections. The chapter wise outline is as following:

• Chapter 1 (Introduction): This chapter introduces the thesis work. Details

regarding the motivation, problem statement, context, and thesis structure are

provided in this chapter

• Chapter 2 (Literature Review): This chapter will provide a review of

past relevant research to this thesis work. It shares the details of program

comprehension, comprehension modes, and approaches used in measuring

program comprehension.

• Chapter 3 (Experiment Planning): This chapter provides detailed planning

and design of the experiment it included a detailed description of goals,

participants, experimental material preparation, tasks to be performed by the

participants, and data analysis procedure.

• Chapter 4 (Conduct): This chapter provides insights into the data collection

process, the procedure to experiment.

• Chapter 5 (Data Analysis and Results): This chapter highlights the data

analysis procedure and interprets the results.

• Chapter 6 (Discussion): This chapter provides an overview of the results and

provided a discussion on important aspects of the study.

• Chapter 7 (Conclusion and Future Work): This chapter provides the

conclusion to this research and the future scope of the research topic.

Chapter 1. Introduction 5

Figure 1.1: Thesis Structure

6

Chapter 2

Literature Review

This section highlights the past research in code comprehension, comprehension models

and approaches used to measuring code comprehension.

2.1 Program Comprehension

Program comprehension is a study that explores how programmers understand

programs. One can comprehend a program if he/she understands its behavior and

structure. Understanding the cognitive processes of developers, such as the processes

by which they comprehend programs, is a prerequisite for building tools, environments,

and methods that support software development in an appropriate manner [6] [7] [8].

Program comprehension is an important activity in the software development life cycle.

In software maintenance activities, programmers spend almost 60 percent of their time

comprehending the source code and thus program comprehension will have a notable

impact on the cost of software maintenance. If a better understanding of program

comprehension is gained it would help in developing tools and technologies that

simplify program comprehension thereby reducing time and cost. To make program

comprehension an easy task, it has to be understood and measured. However, program

comprehension involves a complex cognitive process that can only be measured with

the help of controlled experiments [9]. There are numerous approaches to measure

program comprehension, few of them used in the past and present are presented in the

sections 2.2 and 2.4.

Chapter 2. Literature Review 7

2.2 Approaches to measure Program Comprehension

2.2.1 Recall

Free recall of source code was another way to assess software comprehension. Allowing

developers to remember source code to see if they understood it might seem strange

today, but memorization and eventual recall of source code is an important part of

the development process [10]. In general, recall tests include giving a participant a

fragment of code and asking them to research it for a fixed period of time. The code is

then removed/hidden and the subjects are asked to recall as much of the code as they

can. Both of these steps are repeated several times in some cases [11].

Shneiderman, who wrote many popular reports on program comprehension at the time,

compared programmers’ abilities to musicians’ ability to recall every note in music

tracks or symphonies: He recommended that programmers develop the very same

ability to comprehend entire programs in detail [12]. In one of the studies, Shneiderman

examined two different patterns of a program, in one of the versions the programming

statements were in an executable order and in the other version the statement pattern

was fragmented [10] and he noticed that the one with the proper executable manner

was easier to be memorised and this was also linked to the programming knowledge

(the participants are good at memorising the code with the one which is in executable

order).

Small code snippets were provided to the developers by Soloway and Ehrlich [13].

The goal of the task was to recall the code snippets in exactly the same way it was

provided to the programmers. The researchers evaluated the results and noticed that

the professional programmers were more dependent on the coding standards such as

the meaningful variable names, that when these coding standards are broken, they

are as sluggish as beginners. Recalling method was also used by Pennington to test

program comprehension and studied the influences caused by priming on response

time [11]. Priming is the process of responding quickly to the target stimulus if

Chapter 2. Literature Review 8

you have seen similar stimulus before. As two stimuli are saved nearly together in

participants memory, the target stimulus gets activated by the similar stimulus and

allows participants to respond quickly. During the experiment, the participants were

asked to determine if the code of lines provided in a sequential order were included in

the code snippets they were looking at. If the code of line was followed by the similar

statement then the response time was quicker [3] [14].

2.2.2 Comprehension Tasks

Another activity for developers in Soloway and Ehrlich’s analysis was to "fill in the

blanks," or fill in a left-out part of the code to complete the code snippet. Programmers

can only provide the missing part of the code accurately if they already indeed

understand it [35]. Boysen allowed Programmers to decide between easy expressions,

such as x < 5, were true or false, or find the value of a variable for a more complex

code of lines, such as if x < 5 then y = 1 else y = 2 [2]. Programmers’ correctness and

response time were calculated by Boysen. This challenge is more straightforward than

asking Programmers to recall code because it specifically asks them to comprehend

source code. He discovered that different expressions and operators result in various

response times, and that true statements are executed more quickly [3]. Comprehension

tasks generally entails giving participants a piece of the program that is missing a

segment. The code snippet showed had never been seen before by the experiment

participants, who were expected to complete a blank segment in the code snippet.

Instructions or explanations of how to use the program were not provided to the

Participants [14].

2.2.3 Think-Aloud Protocol

In the past various methods related to self-reporting were used to measure cognitive

processes. Self-reporting methods have been used in cognitive processes observation

for over a hundred years [15]. In this self-reporting method, subjects are asked to

Chapter 2. Literature Review 9

verbalize their experiences, how they are feeling and what they are thinking while they

are doing certain tasks. The subjects are audio or videotaped, these taps are used to

generate transcripts and the transcripts are analyzed. Think-aloud is one such method.

The think-aloud method was traditionally used in psychology for research on cognitive

processes [16].

Since then think-aloud has been used in various disciplines. It has been used to

study decision-making in the medical domain. Other domains used in this method are

education and usability studies where researchers studied learning environments. In

software engineering think-aloud is used to study program comprehension, debugging

and differences in novices and experts [17] [18]. For example, Shaft and Vessey in their

research used the think-aloud method to study developer’s approaches for familiar and

nonfamiliar programs. The results of the study showed that the programmer’s employee

hypothesis for familiar programs and they employee inferences for nonfamiliar programs

[19]. Mayrhauser and Vans conducted a study with programmers who were working

on a maintenance task. The programmer is instructed to verbalize their thoughts

while working on maintenance tasks. The material used for this study is a software

application with over forty thousand lines of code. The results of the study showed

that programmers develop various models while understanding source code and they

switch between different models [20].

In the Think-aloud method, there are two roles one is an observer and the other is

subject. The observer takes note of whatever the subject is verbalizing. Data is

collected from only one subject at a time. This method is expensive in terms of cost

and effort. If the number of participants is high the cost and efforts to organize the

study will raise. Usually, the number of subjects for the think-aloud method is very

less in software engineering researches [21] [6].

Some of the other techniques used by researchers are:

• Maintenance task: A maintenance task on a chuck of code typically takes the

form of an extension, elimination, or debug task. The completeness, correctness,

Chapter 2. Literature Review 10

and time are taken to complete the assigned task are normally used to determine a

programmer’s level of comprehension. This technique has been used several times

by researchers who want to learn more about a participant’s cognitive processes

[22].

• Subjective rating: A rating by participants is mainly the participant’s

self-evaluation of their interpretation of a code segment. Although the

descriptive metric has been debated in some sections, it has been used to assess

comprehension levels for the past two decades [23] [14].

• Label/group code Participants are asked to group and/or mark parts of code

snippet in these experiments. Participants in Rist’s experiment [24] clustered

together increasingly larger and larger pieces of code snippet and produced details

explaining why they did so [14].

• Code coverage/optimisation The experiment by Tapp and Kazman [25] was

formulated to analyse the benefits of fonts and colors which help structuring the

programs simpler to grasp it. There were two tasks, one was to use a unit test to

make sure that all the lines of code in the program was executed (code coverage),

and the other was to optimize a chunk of code that is low in performance while

execution [14].

• Call graph While comparing typographic representations of code, Oman and

Cook [26] used the Call graph technique. They gave their participants the task

of completing an unfinished call graph for a segment of the X-Windows module

written in the C programming language. Participants were evaluated based on

how well they added additional nodes and edges to the call graph [14].

2.3 Program Comprehension Models

The approaches to measure program comprehension mentioned in section 2.2 led to the

development of various models that explain the way programmers try to understand

Chapter 2. Literature Review 11

source code [3] [5] [27]. Important program comprehension model are presented here:

2.3.1 Top-down Comprehension Model

Where the code or form of code is known, top-down interpretation shown in figure 2.1

is used. The program could then be broken down further into components that make

up that device type. New programming can presumably be interpreted completely

from the top down if indeed the programmer had previously learned code that did a

similar thing and was designed in much the exact format.

Strategic, tactical, and execution plans are included in this model. Strategic plans

define a program’s or algorithm’s overall strategy and determine activities that are

not language-dependent. Local tactics for addressing the problem are tactical plans,

and they include language-independent algorithm specifications. Language-dependent

implementation plans have been used to carry out strategic planning which includes

real code fragments. Top-down is used to construct a mental model. It has a set of goals

and plans that are arranged in a hierarchical order. Decomposing objectives into plans,

and plans into lower-level plans, is made easier with discourse rules and beacons. In

most cases, shallow reasoning is used to link the structural modules. Figure 2.1 shows

the three main components of the model. The triangles describe programming plans

or discourse rules. For instance, a portion of the discourse rules would include the

following:

• Variables updated the same way as initialized

• No unwanted code

• The condition must be potentially valid if there is a test for a condition

• Don’t do double work with a program in an inconspicuous way

• When a statement is intended to execute only once then an If condition is

considered; perhaps when the statement needs to be executed repeatedly a While

condition can be used.

Chapter 2. Literature Review 12

The diamond reflects the mechanism of comprehension. Internal or external program

representations are shown by the rectangles. (Documents such as specifications

or design documents; source-code; references, or maintenance manual; and other

relevant documents are examples of external representations plans and schemes are

examples of internal representations). By establishing objectives, the comprehension

method matches external representations to programming strategies using principles

of discourse to pick designs. The internal representation is modified to fit the newly

gained information after a match is completed. Following that, the revised mental

representations are saved as latest update. Comprehension starts with a high-level

objective and then creates the detailed sub-goals that are needed to accomplish the

high-level objective. Based on the current mental representation’s emphasis, program

documents and code evoke execution, strategic plans [28] [13] [29].

Figure 2.1: Top-down Comprehension Model [28]

.

2.3.2 Bottom-up Comprehension Model

A program model and a situation model are two conceptual representations that

comprehension produces. Typically, the program model comes first, followed by the

Chapter 2. Literature Review 13

situation model. Pennington discovered that when developers first encounter code,

the first mental representation they create is a control-flow program framework known

as the program model. This interpretation which is constructed from the bottom up

comprehension model shown in figure 2.2 using observatories, defines the program’s

basic blocks of code control primes.

Pennington explains program model construction using sentence structures and

programming plan information. Micro structures are chunked into macro structures

and cross-referenced to construct the program model. During the comprehension task,

programming plan information, which consists of programming principles, utilizes

previous data and implies future initiatives for processing in long-term memory.

Strategy knowledge from the operating - system environment includes least recently

used (LRU) page substitution for memory management. Queue such as first-in first-out

can be implemented with data structure information [28] [11].

Figure 2.2: Bottom-up comprehension model [28]

.

Chapter 2. Literature Review 14

2.3.3 Integrated Metamodel

The top-down, scenario, and software models, as well as the knowledge base, make up

the integrated code comprehension model as shown in figure 2.3. The first three reflect

comprehension processes. The very first three represent the stages of understanding.

The fourth is required for the other three to be completely finished. Each element

is included in the program’s internal state as well as the method for constructing it.

The knowledge base provides information about the comprehension task to the method

and preserves any new or implied knowledge. When it comes to wide ecosystems, a

range of approaches to comprehension is needed. As a result, the integrated model

integrates Soloway, Adelson, and Ehrlich’s top-down comprehension with Pennington’s

bottom-up explanation. Studies showed, indeed, that developers toggle between the

three comprehension models.

At any point during the comprehension process, any of the three components might

be functional. During the creation of a program model, a developer might notice a

beacon implying a common task, such as sorting. This leads to the theory that the

code sorts something, allowing the top-down model to be invoked. The developer then

creates subgoals and looks for hints to help those in the code. If the developer discovers

some unnoticed code during this quest, he will return to building the program model.

Structures created by one module can be accessed by the other two, but each module

has its own set of desired knowledge types [28] [30].

Chapter 2. Literature Review 15

Figure 2.3: Integrated Metamodel [30]

.

Other notable comprehension models are:

• Letovsky model: The three key components of Letovsky’s high-level

comprehension model are a knowledge base, a conceptual model (internal

representation), and an assimilation process. Programming skills,

problem-domain understanding, discourse laws, strategies, and goals are

all part of the knowledge base.

an annotation layer, an implementation and a specification form a mental model.

In the specification layer, the program objective is featured in detail by the

program’s highest abstraction level. Data structure and functions are represented

Chapter 2. Literature Review 16

as entities in the implementation layer, which includes the lower-level abstraction

[17].

• Shneiderman and Mayer model: The comprehension model of Shneiderman,

and Mayer chunks the program in short-term memory into a semantic

representation. These semantics has various program abstraction levels

such as program goals and the algorithms that are used to achieve the

program’s objectives. Internal semantics development is aided by long-term

memory, an information base of semantic and syntactic knowledge. Semantic

knowledge is independent of any particular programming language and syntactic

knowledge depends on knowledge in a specific programming language. program

comprehension is a directional process it begins with source code and finishes

once the problem is understood [31].

• Brooks model: In Brooks model, programmer domain knowledge is rebuilt with

program comprehension. Understanding the problem is achieved by mapping

knowledge in various domains. A top-down process is employed to build the

mental model and the hypothesis are refined with a top-down approach iteratively

considering various domain knowledge [32].

2.4 New approaches to measure Program

Comprehension

According to researchers, new insights into the programmer can be obtained using

neuro-imaging methods. When participants complete specified tasks, such as

understanding source code, fMRI can be used to see which parts of the brain are

triggered. Based on this model and more than 20 years of fMRI research, distinct brain

regions are linked to different cognitive processes [33]. Some of the new approaches

used to measure program comprehension in recent years are discussed below.

Chapter 2. Literature Review 17

2.4.1 functional Magnetic Resonance Imaging (fMRI)

In the 1990s, researchers discovered that MRI(Magnetic Resonance Imaging) could be

used to observe the changes in oxygen levels in the blood. There is a difference in

the magnetic properties of oxygenated and deoxygenated blood, this can be captured

with the help of BOLD signals using fMRI. Active regions in the brain require more

oxygenated blood than the resting regions, these differences can be observed to precisely

say which brain region is activated and cognitive processes associated with that brain

region. In 1991 a study was conducted to map brain regions and cognitive processes

[33].

Similarly, Siegmund, Janet, et al. used fMRI to study program comprehension. This is

the first-ever study that used fMRI to study program comprehension and demonstrated

the new approach and its potential in the study of program comprehension. As the

subject is present in the fMRI machine, the code snippets are projected on a small

mirror in the fMRI machine, the participants are required to provide the output of

the snippet and identify syntax errors in the snippets. While the participants are

comprehending the source code scan is performed to observe which brain regions are

activated while code comprehension. Java programming language is used to develop the

snippet for this study. A total of 17 participants are observed inside the fMRI scanner.

The results of the study showed that During bottom-up program comprehension,

Brodmann areas 6, 21, 40, 44, and 47 are activated and participants familiar with

the Java programming language require less cognitive effort to understand the code

snippets [4] [2] [34].

Chapter 2. Literature Review 18

Figure 2.4: Experiment setup for use of fMRI in Program Comprehension [4]

.

In another study Siegmund, Janet, et al. conducted a study using fMRI to study the

differences in bottom-up program comprehension and comprehension with semantic

cues. Eleven participants to part in the study. As part of the study code snippets

are presented to the participants which the participants are expected to solve. To

induce bottom-up comprehension variable names are obfuscated in some code snippets,

Semantic cues were used in some of the code, a well-printed layout was present in some

code snippets, and in some snippets disrupted layout was used. The combination of

all such constraints is presented to participants. The results of the study showed that

comprehension of source code will be eased with the help of beacons [35].

2.4.2 Eye Tracking

Eye-tracking was first used in software engineering in the 1990s. Researchers

study program comprehension, model comprehension, debugging, traceability, and

Chapter 2. Literature Review 19

collaborative interaction using eye trackers. In program comprehension, eye-tracking

is used to collect data on the cognitive processes of programmers. Eye trackers capture

the eye movements of the participants, these eye movements provide valuable evidence

of cognitive process in programmers’ brain while they are solving certain tasks by seeing

stimulus [36].

A variety of eye-tracking techniques exist to track the movement of the eyes. The

three predominantly used techniques are video-based tracking, infrared pupil-corneal

reflection, and Electrooculography-based tracking. video-based near-infrared light eye

trackers have become popular nowadays. Infrared light is projected into the eyes of the

subject and the light that hits the eye will be reflected and the reflected light is captured

by the camera of the tracker. With the help of some calculation, the eye-tracker can

precisely detect where the eye is focused [37].

Metrics used in Eye-tracking

Since 1990, numerous studies in software engineering have been conducted using

eye-tracking in these studies researchers used various metrics. Some of the frequently

used metrics in eye-tracking are presented here:

• Fixation: A fixation is an event in which the eyes are fixed on a certain part

of the stimulus for over 200 to 300 ms. Fixation is the most commonly recorded

event in Eye-Tracking data [38]. Fixation helps in deriving the information on

the attention of a subject on the content of the stimuli. Fixation Count, Fixation

Rate, Fixation Duration, and Fixation Time are the frequently used eye-tracking

metrics related to Fixation.

• Saccade: Saccades are eye movements where the eyes move from one point of

focus to another creating an attention path. Saccades are said to be very fast

typically taking 30 — 80ms to complete. Saccades are not always seen to have a

path between successive fixations but can move back and forth along the entire

stimuli and these backward saccades are called regressions [39]. Information

Chapter 2. Literature Review 20

processing only happens when the eyes are fixated but not during saccades

motions, [40]. Number of Saccades, Saccade Duration, and Regressions rate are

the frequently used Saccade metrics.

• Pupil dilation: In low light conditions, to allow more light into the eye the

pupil gets widened this is called Pupil dilation. In program comprehension task

pupil dilation occurs if the tasks is too complex to be understood [41].

• Scanpath : The participants eye movement pattern for the first fixation to the

last fixation in chronological order is a Scanpath.

Figure 2.5: Fixations and Saccades [42]

.

Figure 2.5 represent the scan path on the program snippet. The circles in the figure

represent fixations, the numbers on the circle represent the fixations order and the size

of the circle represents fixation duration. Lines represent saccades [42].

2.4.3 Eye tracking studies in Software Engineering

Eye-tracking is been widely used in program comprehension in recent years. The

first eye-tracking study in software engineering is carried out in 1990 by Crosby and

Stelovsky, they studied the effect of the experience of programmers on comprehension.

The study result found that programmer with less experience pay more attention to

comments than experienced programmers [43] [44] [45].

Figure 2.6 shows the number of eye-tracking studies published in recent years. As it

can be seen in the chart there is a sharp rise in publications in recent years.

Chapter 2. Literature Review 21

Figure 2.6: Number of Eye Tracking studies published in respective years [45]

.

Details of the few of the eye tracking studies in code comprehension

Code comprehension studies that used eye-tracking performed comprehension tasks,

participants are expected to read and understand the programming task and answer a

few questions regarding their understanding.

Following are a few of the code comprehension studies that used eye-tracking, details

like the number of participants, programming language, type of eye tracker, variable

are presented in the form of a table.

1. Crosby and Stelovsky studied the effect of experience on programmers code

comprehension [43].

Figure 2.7: Crosby and Stelovsky study on code comprehension [44]

.

Chapter 2. Literature Review 22

2. Crosby et al. studied the difference in how beacons are used by the experts and

novices to comprehend source code. The study found that the beacons simplify

program comprehension [46].

Figure 2.8: Crosby.et.al study on code comprehension [44]

.

3. Bednarik and Tukiainen studied the programmers approach in using code and

visualisation, the Java code was presented with help of a visualization technique

[47]

Figure 2.9: Bednarik and Tukiainen study on code comprehension [44]

.

4. Busjahn et al. conducted an experiment in which the difference in the reading of

source code and natural text was investigated [48].

Chapter 2. Literature Review 23

Figure 2.10: Busjahn et al study on code comprehension [44]

.

5. Sharafi et al. studied the effect of identifiers style: underscore vs. camel case on

recall of identifier names by programmers [49].

Figure 2.11: Sharafi et al. study on code comprehension [44]

.

6. Busjahn et al. studied the differences in attention distribution of experts and

novices in reading strategies [50].

Chapter 2. Literature Review 24

Figure 2.12: Busjahn et al. study on code comprehension [44]

.

2.4.4 fMRI and Eye Tracking

fMRI has been used in neuroscience for several years and in software, engineering fMRI

is been mainly used in program comprehension studies. Through the use of fMRI in

program comprehension studies there are few limitations to this like in fMRI studies,

for an individual task sequence of the mental process of a participant is not possible

to observe. It is also difficult to say how the participants completed the task. There

is a gap in understanding the individual program comprehension phases. The other

limitation with fMRI is its temporal resolution is very low one to two seconds while

the rapid cognitive process takes place in a fraction of a second.

To overcome these limitations of fMRI Peitek, Norman, et al. came up with the

new approach of using fMRI and Eye-tracking simultaneously for measuring program

comprehension. Such a combination of methods helps in overcoming the limitations

and would complement each other’s strengths. The information about the participants

focus area and the high temporal resolution helps in identifying the brain activities

precisely in time. With this approach, it would be easy to determine which cognitive

process is triggered by what part of program stimuli. Peitek, Norman, et al were able

to successfully conduct a program comprehension study by adding eye tracking to the

fMRI experiment and proved that program comprehension measure with eye-tracking

and fMRI is promising and also showed that fine-grained fMRI study is feasible with

Chapter 2. Literature Review 25

simultaneous eye-tracking [51].

Figure 2.13: Simultaneous fMRI and Eye Tracking study setup [51]

.

Eye-tracking has been used in combination with neural measures like fMRI, EEG and

fNIRS [52] [53] [54] but most of these studies used eye tracking as an indicator for

whether the participant completed the task.

Other techniques used in program comprehension: Electroencephalography

(EEG) is one of the approaches used to measure program comprehension. EEG

measures the electrical impulses of a neuron’s activation and, thus, has a high

temporal resolution, but at the cost of lacking the high spatial resolution of

fMRI. Moreover, extracting event-related brain activation with EEG requires much

more averaging than in fMRI. Kluthe used EEG in program comprehension. He

observed participants with different experience levels in the study and found that the

participants with less experience felt the comprehension task was difficult to solve

[55]. Functional near-infrared spectroscopy (fNIRS) is also been used in measuring

program comprehension. It also measures the BOLD effect but it uses light-absorption

properties of blood [56].

26

Chapter 3

Experiment Planning

Experiment planning is a critical aspect when performing experiments to ensure the

experiment’s success. Before experimenting, careful preparation is needed, which aids

in the structuring of the experiment as well as the testing of the feasibility of the

proposed research. Experiment planning could reveal design flaws, which could result

in erroneous data.

The key aspects of planning and conceptualize an experiment are a well-defined goal of

the research, well-designed experiment material to obtain desired results, participants

with desirable qualities to suit the research, most impotently hypothesis and variable

such as independent variables and dependent variables. The independent variables are

the variables that are completely under the influence of the experimenter and can be

manipulated according to the study’s needs as well as the hypothesis. The dependent

variables are the variables that we want to observe, these variables are the values

obtained after experimenting hence can not be controlled and can be used to test the

hypothesis [38]. Based on this hypothesis and variables, suitable tools and technologies

are to be used to design an experiment. This chapter highlights other important aspects

of experiment planning.

The experiment progress takes place in stages beginning with the development and

selection of code snippets for the study as seen in Section 3.3 and ends with the

evaluation and testing of the data that is collected to satisfy the formulated hypothesis.

The stages of experimentation are described below:

Chapter 3. Experiment Planning 27

1. Stage 1: The first stage is designing and choosing suitable code snippets to

ensure that the experiment runs smoothly. The procedure for this operation is

described in detail in Section 3.3. The next activity in this step is to get familiar

with the SoSci Survey online platform since it is used to develop questionnaires

and data collection in the form of an online survey. Another important activity

is to learn how to conduct a study using the Think-aloud protocol. The details

of the Survey set up using the SoSci survey platform and Think-aloud protocol

are presented in later sections. Once the mentioned activities like code snippets

creation, selection, and establishing understanding about the surveying platform

and think-aloud protocol, experiment design move to the next stage.

2. Stage 2: In this stage questionnaire for the survey is to be created using the

SoSci survey platform which involves a variety of steps ranging from generating

individual questions to writing a questionnaire for data collection. The procedure

for using the SoSci survey platform for creating questioners is described in section

3.6.1. Once the questionnaire is created it is important to test the questionnaire

for the flow and errors. The collected sample date is also to be observed with

respect to the questions in the questionnaires for any abnormalities.

3. Stage 3: Once the questionnaires are thoroughly tested for errors. The

questionnaire is then ready for conducting the survey. Participants are invited to

an online meeting and the link to the survey is provided to the participants after

a short briefing about the survey. The time for the survey is chosen according to

the participants’ convenience.

4. Stage 4: Once the data is collected from the participants then data is cleaned for

errors and deformities to ensure the formation of an accurate result set. Now the

data set is ready for analysis to evaluate the research question and hypotheses.

The data set can be visualized with graphs to give a clear pitcher of the obtained

data.

The sub-sections contain details about the study’s strategy and design. It contains

Chapter 3. Experiment Planning 28

information about the hypothesis formed from the research question as well as how the

experiment is expected to proceed to achieve the desired results.

Following are the details of the sub-section in respect to the above mentioned stages

1. Sub-section 1 elaborates on the goal of the research.

2. Sub-section 2 provides the details of the participants who took part in the

experiment.

3. Sub-section 3 provides details of the experiment material.

4. Sub-section 4 describes the tasks that the participants have to deal with.

5. Sub-section 5 describes the technologies that were used to build the experiment

setup for data collection.

6. Sub-section 6 provides the detail description of the experiment design along

with details of the hypothesis formulated with respect to research questions,

variables, and the survey setup in SoSci Survey.

3.1 Goals

The extensive research in the field of program comprehension since the past 30 years

lead to the development of various comprehension theories, strategies, measuring

techniques, and other valuable information about the comprehension of programs but

still, there is a huge gap in understanding the cognitive process underneath program

comprehension.

In present days with the advancement of technology researchers started exploring the

feasibility of using fMRI, EEG, Eye-tracking, and a combination of these technologies

to get better insights into programmers’ brains.

Though the pandemic has a great influence on our lives restricting us to limiting our

contact with peers and families. Pandemic also has a great influence on how research

Chapter 3. Experiment Planning 29

studies have been carried out, once again with the help of technology it was possible to

conduct the research remotely without risking the participant’s health. The study is

designed in such a way that the experimenter and participants may be in their desired

location and yet produce valid data that can be used to form empirical evidence.

The main goal of this research is to determine whether there would be any differences in

programmer’s behavior while they are comprehending numbers and words algorithms.

This behavioral difference could help in understanding the approaches and strategies

of programmers while working with numbers and words. And also may lead to further

research on behavioral differences.

This study considers numbers and words as a factor that affects the behavior of the

programmer in terms of correctness and response time. This may help in understanding

whether the number and words have an impact on program comprehension.

3.2 Participants

In this research, the effect of words and numbers on programmers behavior is studied

with the help of data collected from external human subjects. The participation of

the correct participants is an important factor for the study to generate useful and

meaningful results. Non- suitable participants might result in unwanted results and

even cause the failure of the study.

This study relies on the responses from the participants in the field of computer science.

The link to the online survey is shared with the participants, before they start the

survey the participants are briefed about what the task is and how to carry on with

the survey.

Demographic data such as age, gender, education level, experience learning

programming, experience learning the java programming language, and professional

programming experience are collected. Though the participants involved in the study

Chapter 3. Experiment Planning 30

have random programming experience, experience in java is important to cross-check

the collected response with responses of participants from other programming domains.

Knowledge about the programming basics, data structures, algorithms, and the

basic understanding of the java programming language is sufficient to answer the

programming tasks in the survey. Knowing about the programming experience of

the participants would help the researcher in better understanding of collected data.

Preferred programming language and programming skills compared to participants’

course mates and colleagues are the other demographic questions asked.

A computer, an uninterrupted internet connection, a web browser of participants choice

like Chrome, safari Firefox, etc., and communication application such as Google meet,

Microsoft Teams, Skype is the basic requirements from the participants end to take

part in the survey.

To recruiter the participants, a description of the research topic and the background

of code comprehension studies, and a request to participate in the survey are provided

in the social media groups of my course mates and my bachelor’s course mates. People

interested and curious about the research took part in this research survey.

In Chapter 4 the further details about the participants who took part in this study

and the distribution of data sample among the participants are presented.

3.3 Experiment Material

The experimental materials used in this study are code snippets. In a program

comprehension study code snippets are an important part of the study, in most

of the instances code snippets act as deciding factors for the experiment’s success.

Inappropriate code snippets for a specific purpose of the study would generate unwanted

results [5]. This section briefs the creation and choosing of code snippets for this

research. As the goal of the research is to find the behavioral differences of programmers

in terms of correctness and response time while comprehending numbers and words

Chapter 3. Experiment Planning 31

algorithms, this makes the selection of code snippets an important factor to evaluate

the hypothesis.

3.3.1 Code Snippet Creation

Code snippets must be written following the study’s design and documented in such a

way that they can be easily modified and reused in other experiments and studies.

For this study, a total of 14 code snippets are created by taking inspiration

from the previous studies on program comprehension such as Understanding

Understanding Source Code with Functional Magnetic Resonance Imaging, Measuring

Neural Efficiency of Program Comprehension, Simultaneous Measurement of Program

Comprehension with fMRI, and Eye Tracking: A Case Study. Out of 14 code snippets,

10 snippets are finalized to be used in the study. Small to medium-sized code snippets

with a maximum of 30 lines of code were used in the experiment.

The code snippets created for this study are designed in 5 sets, each set consists of two

almost identical code snippets (i.e the programs are logically similar) one working on

numbers and the other on words. For example, if we consider the algorithm removes

duplicate one algorithm of the set removes the duplicate elements in a number array

and the other removes the duplicates in the string array. Figures at the end of this

section would explain this.

The code snippets are designed in such a way that all of the basic principles of the

programming paradigm are considered, allowing the experiment to be more varied and

challenging for the participants. The code snippets are created using Eclipse IDE.

An Eclipse IDE plugin Check Style’ is used to follow the coding conventions. All the

created snippets are tested for errors and executed for cross-checking the outputs. The

complexity of the snippets is taken into consideration so that the snippets do get too

complex to be understood by the participants.

Chapter 3. Experiment Planning 32

3.3.2 Code Snippets Selection Criteria

Once the code snippets are created the next step is to define the criteria to select

the appropriate code snippets from the created set of snippets. The selection criteria

would have a great impact on how well the participants carry out their tasks. A

better understanding of potential participants for the study and the goal of the study

is required to select appropriate code snippets for the study. Here are the criteria

considered for the selection of the code snippets.

• The code snippets should be easy, The participants could also be novice

programmers, if the snippets are complex to understand, the participants could

take an unusual amount of time to answer or they may lose interest in the task

leading to t experiment failure.

• The code snippets should be challenging enough for the participants so that

relevant data can be generated, if the snippets are not logically challenging enough

for the participants then they might solve the task without having a look at the

snippet completely, this will generate an unwanted result.

• The snippets should represent the commonly known concepts that are taught

during the initial stages of the programming course. More complex concepts

might confuse the participants.

• Snippets should consist of various operation such as control structures and

conditional statements.

Following are the two code snippets among the other eight snippets designed to be

used in this research.

Chapter 3. Experiment Planning 33

Figure 3.1: Algorithm to remove duplicate elements in a number array

.

Chapter 3. Experiment Planning 34

Figure 3.2: Algorithm to remove duplicate elements in a string array

.

As it can be seen in Figures 3.1 and 3.2 both the algorithms are to remove the duplicate

elements from an array and they are almost identical in their programming logic. One

algorithm works with an integer array and the other works with a string array.

3.4 Tasks

In most of the program comprehension studies, comprehension tasks and debugging

tasks are the common sorts of tasks that the participants are expected to solve.

In comprehension task participants are provided with code snippets and asked to

determine the output of the program. The snippets used are usually that perform

simple integer arithmetic, string operations like reversing a string, concatenating

strings, etc, searching and sorting algorithms like binary search, bubble sort, etc.

Chapter 3. Experiment Planning 35

Sometimes constraints like obfuscation and beacons are used to induce bottom-up and

top-down comprehension respectively [35] [4]..

In debugging or syntax tasks, syntax errors like missing parenthesis, miss-matched

quotation marks, missing identifiers, and semicolons are introduced into the code

snippets participants are asked to identify the errors in the given code snippets.

In this study, like the above-mentioned studies comprehension tasks are used to study

the behavior of the participants. Participants are provided with 4 code snippets that

perform arithmetic operations on numbers, search operation on a string for a specific

character, integer, and string array manipulations. Participants are asked to go through

the code snippets that are provided to them and indicate the out of each algorithm.

Apart from the comprehension task the other important task for the participants is

all the participants are asked to say whatever they are thinking out aloud. As the

participants are going through the snippets and understanding the logic they are asked

to verbalize their thoughts so that a clear understanding of their approach to solve

the tasks can be gained. Further details about how the snippets are presented to the

participants, how the participants provided their inputs, and how the data is collected

are discussed in the Experiment Design section.

3.5 Tools and Technologies used

The implementation of the experiment plane involves the use of various tools and

technologies combination. Each tool or technology has a distinct role to fulfill, and

they operate at various stages of experiment implementation. The following are some

of the most relevant tools and technologies used in this study:

1. SoSci Survey Tool: SoSci Survey is a specialized online questionnaire tool for

conducting scientific online surveys. This is an online tool that runs on the SoSci

server and can be accessed via a browser. With premium tool services, this tool

may also be set up on private servers of businesses or universities based on their

Chapter 3. Experiment Planning 36

needs. When research or thesis is not performed to generate business or any other

monetary gain and the research data is available to the public, then a student or

a researcher of the university or any non-profit organization can use the services

of the SoSci for free. SoSci survey can be used by a variety of professionals

for a variety of reasons, including marketing professionals from businesses and

university students and researchers for research purposes. Following are the

features that are available to university students for free [57].

• The tool includes custom questionnaire filters that enable students to impose

custom constraints on the survey process and the types of responses that

are expected.

• Languages such as HTML, JavaScript, and PHP are integrated into

the platform. These programming languages would help the researcher

to customize the pattern of the question and the order in which the

questionnaire is to appear.

• If a random set of questions (e.g random set of code snippets) are to be

provided to the participants, then by applying PHP code randomization of

questionnaires can be achieved.

• With UTF-8 encoding, the questionnaire supports multiple languages and

special characters from various languages like German, Russian, Korean,

etc.

• SoSci Survey provides a section where all the collected data can be viewed

and downloaded. The collected data can also be filtered with various

constraints to view specific details of the collected data.

With such a wide variety of questionnaire setup options, features, and flexibility

that a tool has to offer, the SoSci survey is one of the popularly used online survey

tools used by researchers. The setup of the survey questionnaires for this research

Chapter 3. Experiment Planning 37

using the SoSci Survey are detailed described and illustrated in the ’Experiment

Design’ section.

2. Other tools used for this study are OBS, Skype, Google meet, and Microsoft

teams. As it can be seen the last three tools that are mentioned here are used

for online communication, the survey is conducted online with the help of these

tools. On the other hand, OBS (Open Broadcaster Software) is an open-source

streaming and recording tool. It provides features like screen capturing and audio

recording. OBS is used to record the screens and voices of the participants while

they are participating in the survey. Few of the communication tools mentioned

above such as google meet and Microsoft teams do not allow screen recordings

in their free versions to compensate for this OBS is used in this study. The

detailed setup of the OBS software to capture screen and audio is presented in

the ’Experiment design’ section.

3.6 Experiment Design

With the focus on the aim of this study to determine how numbers and words

affect programmers behavior in terms of time and correctness during program

comprehensions, the variables of the study are described here:

• Dependent Variables

1. Result data: The resultant data consist of participants behavior like time

take to respond to the question and correctness of the answer while they are

working with words and numbers algorithms.

• Independent Variables

1. Code Snippets: The algorithms working with numbers and words are the

same in their programming logic.

Chapter 3. Experiment Planning 38

2. Programming Experience: Participants in this study are programmers with

varying levels of programming experience.

3. Programming Language: All the code snippets used in the study are

developed in java programming language.

The purpose of this study can be formulated into a research question such as,

• RQ1: Does the correctness of programmers differ for numbers and words

algorithms?

• RQ2: Does the response time of programmers differ numbers and words

algorithms?

The above mentioned research question can be formulated into two pairs of hypotheses

to test the collected data sets, the hypotheses are listed below:

• H0(1) : Correctness of programmers does not differ for algorithms working with

numbers and algorithms working with words.

• H1(1) : Correctness of programmers differ for algorithms working with numbers

and algorithms working with words.

• H0(2) : Response time of programmers does not differ for algorithms working

with numbers and algorithms working with words.

• H1(2) : Response time of programmers differ for algorithms working with numbers

and algorithms working with words.

3.6.1 Experiment setup

This section provides the details of the tool setup to conduct the experiment, first the

detailed questionnaire design in the SoSci survey platform is described and then the

detailed setup of OBS recording tools is presented.

Chapter 3. Experiment Planning 39

• Setting up SoSci Survey: SoSci Survey is a simple tool for designing and

building questionnaires with customizable questions. Selecting suitable question

and answer types and writing questionnaires using drag-and-drop operations can

be used to generate surveys.

In this thesis the difference in the correctness and response time of the

programmer while they are comprehending number and words algorithms

is studied, The questionnaire is designed to gather information about the

participants understanding of code snippets, so the participants are asked to

provide the output of the code snippets that they went through and level of

confidence in their answer. Other questions regarding participants’ education

level, current profession, experience in programming, professional experience, and

preferred programming language are asked to learn more about the participants

who took part in the survey.

The layout of the SoSci survey platform can be seen in the figure 3.3. Layout in

the figure 3.3 appears once a user login into their account. The steps to create a

questionnaire are as follows

1. Complete the login process and pick the desired project from the "Projects"

tab’s list of projects.

2. If a project is selected, a page is loaded that displays the controls for creating

survey questionnaires as seen in the figure 3.3. There are three key sections:

The first control section to the left top corner is ’List of Questions’ this

section provides the option to create sets of questions, questions can be

grouped into sections which helps in properly organizing the questions to

creating the questions. All the questions that are created for the study can

be seen here in this section.

The next section is ’Questionnaire’ here all the features such as ’Compose

Questionnaire’, ’images and media files’, Questionnaire layout’, ’Special

Chapter 3. Experiment Planning 40

Features’, etc that are related to creating a questionnaire can be found.

Using these features a questionnaire can be created, image files and media

files required for the questionnaires can be uploaded and the theme of the

questionnaire layout can be changed, also footer text can be edited and a

logo can be added.

The next section is ’Controls’, here all the settings related to a project can

be found. In this section one can exercises features like an overview of the

project, project setting for how long the project be active, test the project,

preview, and even download the collected data sets.

Figure 3.3: SoSci Survey online platform showing various controls

.

3. In this study, two different question sections are created in the SoSci survey

platform one for the questions related to the comprehension tasks and the

other for the demographic questions. This can be observed in the figure

3.4. The comprehension task section consists of an image that shows code

snippets the participants have to understand, a text area to provide an

answer to the snippet, and a question to indicate participants confidence in

the given answer. These questions can be created in the ’list of questions’

section by clicking ’add question’ and ’add text’, in this subsection various

Chapter 3. Experiment Planning 41

types of question layout can be selected, questions can be composed and

images can be shown in the questions with the help of ’add text’ option.

Images can be simply added to the question by adding HTML of the image

to be presented to participants is provided in the ’add text’ option. One

such text creation with the image inserted can be seen in figure 3.5

Figure 3.4: The list to questions section showing two different section of questions

’Comprehension Task’ and ’Demography’

.

Figure 3.5: Figure showing a created question

.

Chapter 3. Experiment Planning 42

4. Once the questions are created, the questionnaire can be created with the

help of the ’Questionnaire’ section. With the ’Create a new questionnaire’

option a questionnaire template can be created which can be seen in the

figure 3.6. Questionnaire Pages’ is the tab the user is presented with. In

this tab there are provisions to create pages for the questionnaire, each page

has a page number and the id of the page, the questions created earlier will

appear in the right bottom corner of the user interface. Desired questions

can be dragged and dropped onto the page. In the study the questionnaire

is designed in such a way that the first page of the questionnaire asked

for the participants consent regarding data collection thereafter each page

presents the participants with a code snippet, a provision to write the

output of the snippet, and a confidence question, there are 4 pages with

this configuration and then the 6th page presents the participants with the

demographic question and in the last page, the participants are thanked

for their participation and spending their valuable time. An example

questionnaire is provided in the Appendix section of this report.

Figure 3.6: Feature to create a questionnaire

.

5. Once the questionnaire is prepared, it can be previewed, the yellow and

green play buttons enable the preview of the questionnaire. The yellow

button enables the preview in debug mode. In debugging mode where the

Chapter 3. Experiment Planning 43

question id of each question on a page can be seen along with some additional

information. The green button can be used to preview the questionnaires

as it appears to the participants. Preview helps in view the layout of the

questionnaire and detect mistakes in the questionnaire beforehand.

6. As the questionnaire is prepared and previewed the ’controls’ section of the

SoSci survey provides some more options to manage the project. ’Project

Overview’ is the option that enables the users to see the status of the project

whether the survey is on or finished. The ’Project settings’ section provides

an option to edit the basic information about the project and set the survey

administration period and enable to export of the project. The ’Pretest and

preview’ option enables the pretest of the survey and preview.

7. Another important section is ’Collected data’ this section provided all the

data that is collected from the participants. There are various option to

collect different sets of collected data

Once all the questions and questionnaires are created and tested the survey

is ready to be presented to participants. In the ’manage questionnaire’

section links to all the questionnaires are available and these links can be

provided to the participants to take part in the survey.

• OBS: Open Broadcaster Software is a screen and audio recording tool. Some of

the communication application like Google meets and Microsoft Teams does not

allow the recording of the meetings while using them for personal use. Half of

the participants preferred to use these applications for the meetings, so to record

their screen and audio OBS is used. Following are the steps to set up OBS:

1. Download the Software for the official website https://obsproject.com/ for

the respective operating systems.

2. Click on the downloaded file to install the software and follow the onscreen

instructions.

Chapter 3. Experiment Planning 44

3. The OBS application interface is shown in the figure 3.7 The application

shown in the figure 3.7 is already configured and ready to be used. As

it can be seen in the figure there several mini tabs at the bottom of the

screen like ’Scene’, ’Sources’, ’Controls’ etc. Click on the (+) symbol in the

’sources’ tab to see more options and select ’Display capture’ and ’Audio

Output Capture’. Once these options are chosen the tool is ready to be

used. By clicking the center portion on the screen, the size of the screen to

be captured can be adjusted [58].

4. The ’Controls’ mini tab provides various buttons like ’Start Streaming’,

’Start Recording’, etc. To record the meeting click on the ’start recording’

button and once the meeting is ended click on the ’stop recording’ button.

The recorded meetings can be found by navigating to ’Files’ -> ’Show

Recordings’ [58]

Figure 3.7: OBS tool user interface

.

Chapter 3. Experiment Planning 45

3.7 Analysis Procedure

The collected data is subjected to statistical analysis to determine its significance.

Statistical analysis algorithms are used to determine the importance of collected data

sets. The T-Test, Mann-Whitney test, Needleman-Wunsch Algorithm, and other

algorithms can be used to test significance. In this study, the Mann-Whitney test

is used to test the significance of the data obtained from the survey. Mann-Whitney

test is used to compare two independent samples for differences in them. This test is

quite suitable for small sample sizes and the sample size can different for two samples for

comparison. This test is also widely used in testing the significance of the hypothesis,

these are the reasons for choosing the Mann-Whitney test for testing the hypothesis

for this study [59].

Following are the steps to conduct Mann-whitney test:

• The first step is to determine the hypothesis for the given research questions.

Each research question will have two hypotheses, the null hypothesis which is

denoted by H0 and the alternative hypothesis is denoted by H1. For instance,

if the difference between the two samples is to be determined then the Null

hypothesis (H0) states that there is no difference between the two samples and

the alternative hypothesis states that there are differences between the samples

[60].

• Once the hypotheses are determined, the data samples for two different

treatments are sorted from lower to higher values and are ranked from 1 to n

where n is the addition of two sample sizes. If there is any tie in the sample data

then the average of the ranks for the tied samples are calculated and assigned to

tied samples [60].

• Once the rankings of the sample data are done, these rankings are to be added for

two sample groups. The Sum of the rankings is used to calculate UStat. Formula

Chapter 3. Experiment Planning 46

to calculate UStat are provided below. The lowest value obtained among the two

sample groups will be chosen as U Stat [60].

• Once the U Stat is calculated, it has to be compared with the U Critical which can

be found in the Mann-Whitney test critical value table for various significance

values denoted by ↵. If the UStat is greater than UCritical then the null hypothesis

should be accepted else it should be rejected.

Following is the formula to calculate U value:

U1 = R1 –
n1(n1 + 1)

2

U2 = R2 –
n2(n2 + 1)

2

Here U1 is for the sample one and U2 is for sample two, the smallest value among these

both will be UStat. R1 and R2 are the sum of the ranks of sample one and sample

two respectively. n1 and n2 are total number of ranks of sample one and sample two

respectively.

47

Chapter 4

Conduct

Chapter 3 provided the detailed implementation plan and design of the experiment.

In this chapter, a detailed description of the experiment implementation and data

collection is presented. This chapter is divided into three sections:

• The first section describes the participants briefing.

• The second section presents the procedure followed to implement the experiment.

• The third section provides the details of data collection like how and where the

data is collected, what tools are used to collect data.

4.1 Participants Briefing

After the questionnaire has been thoroughly tested, it is ready for the actual survey.

The survey will start with a short briefing. The participants must be briefed with

instructions on what is the survey about, The procedure involved in the survey, What

are the tasks they are expected to solve, things that they should keep in mind while

taking the survey and some general instructions to take the survey correctly. The

briefing is very important because it helps in carrying out the study as planned so that

no error data is produced and the experiment does not fail.

The list of instruction that the participants are expected to follow are :

• The participants are requested to dedicate 30 minutes of their time without any

interruptions during the survey.

Chapter 4. Conduct 48

• The participants are asked to speak their minds while they are solving the task.

They are requested to be loud and clear to record their voices.

• The Participants are asked to share their screens while they are dealing with the

tasks. They are informed about their screen will be recorded along with their

voice.

• The participants are asked to focus completely on the task at hand, understand

the snippets thoroughly and then answer.

• Participants must consider the importance of the study and try to answer all the

questions properly such that valuable data can be collected.

4.2 Procedure

In this section, a detailed description of what happens to the participants from the

moment they start the questionnaire to the point they finish it.

1. The first task is to invite the participants to take part in the survey. The

Participants interested in the research responded with their willingness to take

the survey. Each participant is suggested to choose a time slot of the day that

they prefer. Participants provide their availability to take the survey according

to their convenience.

2. On the scheduled date and time an online meeting is organized. The online

meeting is conducted with the help of communication tools such as Google

meet, Microsoft Teams, and Skype according to users convenience. In a normal

circumstance the experiment would have taken place face to face but due to the

Covid-19 pandemic, keeping the participants well being and restrictions in mind

all the meeting sessions had to be conducted online.

3. As the meeting starts, the participant is given a briefing as mentioned in the 4.1.

Details about the survey, the kind of tasks he/she is expected to solve, a short

Chapter 4. Conduct 49

description of the think-aloud protocol, and the task of verbalizing their thoughts

while dealing with the tasks are clearly explained to the participant.

4. Once the participant is ready for the survey after the briefing, the participant is

asked to share the screen so that his/her activities during the survey can be seen.

The meeting session will be recorded, if the recording option is not available then

the screen capturing software OBS is used to record the session.

5. Once the participant start sharing the screen a link to the online survey is

shared with the participant through the chat window of the meeting tool. The

questionnaire opens in the new window as soon as the participant clicks the link.

6. On the first page of the questionnaire, the participant encounters a consent

question whether he/she agrees to take part in the survey along with the

short description of the objective of the study and what task lies ahead in the

questionnaire.

7. As the participant gives his/her consent, from the second page till the fifth page

the participant would face comprehension tasks. Each page consists of an image

of the code snippets designed and selected in the section 3.3 along with a provision

to provide the output of the code snippet and his/her confidence in the provided

answer.

8. Comprehension tasks are presented in this order from page two till page five,

the first comprehension task would be an algorithm that works with numbers

(numbers algorithm) or the algorithm that works with words (words algorithms),

then two distraction snippets are presented in two consecutive pages to distract

the participants and then again a numbers algorithm or a words algorithm. As

mentioned in the variables of the study both the words and numbers algorithms

should be identical in their logic. For example, if the first task is removing

duplicated from an integer array then the last task would be removing duplicated

Chapter 4. Conduct 50

from a string array and if the first task is a words algorithm then the last would

be a numbers algorithm with the same programming logic.

9. From page two, while the participant tries to comprehend the tasks he/she would

verbalize his/her thought process and provide the output of the code snippet.

This will continue till page five and then a set of demographic questions are

presented to be answered on page six and then the questionnaire ends on page

seven with a thank you note.

10. As the last step of the study, the participants are asked few questions about their

approach in solving the comprehension tasks as part of the think-aloud protocol.

Following are the questions asked at the end of the survey:

• When you first saw the algorithm, what drew your attention?

• Did the names of the variables, functions and class name helped you to

figure out what the algorithm is about?

• Did you find any similarities in the algorithms?

• Did it make a difference to you if the algorithm used integers or strings?

• Was your approach to solve numbers and words algorithms different?

With this, the survey will end. The recording will be stopped and the recorded

meeting session will be stored on the local system.

The sample of the questionnaire will be provided in the Appendix section of this thesis

report.

4.3 Data Collection

The survey was conducted over for a month, participants are available to take part in

the survey on different days and times. The survey’s response data is automatically

entered into the SoSci survey tool and can be found in the "Collected Data" section.

Chapter 4. Conduct 51

The SoSci survey platform provided various options related to collected data. The

"View Data Set" option provides all the data that is collected and other several options

such as "filter" can be used to filter the collected data by questionnaire. The data is

presented in the form of a table, each response data set collected can be identified

with a "Case Number" which is automatically generated by the SoSci Survey platform.

Each data set can be expanded in a new window by clicking the case number, an exact

questionnaire that the participants answered including the start time can be viewed.

The actual response provided by the participants can be viewed.

Figure 4.1: "View Data Set" option presenting the collected data

.

As it can be seen in the figure 4.1 a table with responses for a specific questionnaire is

presented with the "View Data Set" option. Vivid ranges of options are available to

view the data like responses from a specific questionnaire can be selected, responses can

be filter based on the case, serial, and responses. The responses table can be navigated

with options like "Jump to the first record", "Previous Cases", "Subsequent Cases",

and "Jump to the last record".

A total of sixteen questions in a questionnaire are presented to the participants.

Participants are required to answer all these questions to complete the questionnaire.

The questions in the questionnaire can be divided into the following categorized:

Chapter 4. Conduct 52

1. The first question is to obtain participants consent to take part in the study.

2. Comprehension tasks: There are eight questions that are related to

comprehension tasks, participants are required to verbalize their thoughts while

understanding each task and provided the output of the code snippet and their

confidence in the provided answers.

3. Demographic Questions: In this four-question series, participants are asked

about their gender, age, education level, and current occupation.

4. Experience, skill, and preference: Three questions related to participates

experience in learning programming, programming in java, programming

professionally, and preferred programming language are asked.

A total of 15 participates took part in the study. Responses from only 12 participants

are considered in this study, The demographic data of the participants can be seen

in the figure 4.2. The collected responses are distributed among the participants of

different genders, age groups, and education levels. Eight participants are male, four

participants are female. Five participants have a master’s degree and seven participants

have a bachelor’s degree in the field of Computer Science. Eight of them are currently

working as software Engineers and four of them are pursuing a master’s degree in

Computer Science. The answers provided by the participants to the code snippets and

the time taken by the participates to complete each comprehension task are recorded

and can be accessed from the "Collected Data" option in the SoSci Survey platform.

As part of the think-aloud protocol, all the meeting sections are recorded. The audio

recordings are converted into transcripts to understand the difference in participants

approach for numbers and words algorithms.

The data that is collected from the code shippers is more important to this study

rather than the demographic data of the participants. So demographic data of the

participants can be considered as an informative part of the study. To gain a better

Chapter 4. Conduct 53

perspective of the participants questions related to their experience and preferences are

asked.

Figure 4.2: Participants Demographic Data

.

The data collected as part of the think-aloud protocol such as the participants audio

while they are verbalizing their thoughts and their answers to the questions at the

end of the survey are converted into transcripts. These transcripts are also the major

source of information regarding participant’s approach and thought process while they

are understanding numbers and words algorithms.

54

Chapter 5

Data Analysis and Results

In the last chapter implementation of the experiment and the data collection is

discussed. In this section data cleaning, and analysis of data will be presented.

5.1 Data Set Preparation

Data set preparation is an important task. Any incorrect and erroneous data should be

removed to gain accurate results. The data set is also to be formulated into analyzable

data sets. These formulated data sets will help in evaluating the hypothesis more easily.

The raw data collected from the study consist of inadequate responses from a few of

the participants. This led to the removal of the three responses for data analysis. As

mentioned in the section 4.3 a total of 12 responses from the participants are considered

for analysis and evaluation, the rest of the three participants responded vaguely and

without full attention to the logic of the code snippets.

The data obtained from the survey is organized into various types of data sets, which

are then analyzed to produce acceptable scientific conclusions. The formulated data

sets are organized into multiple table data sets that display various types of data values,

and they can be categorized as follows:

• Correctness of Numbers and Words Algorithms Data Table: This data

table consist of number of correct answers provided by the participants to each

numbers and words algorithm.

Chapter 5. Data Analysis and Results 55

• Response time of Numbers Algorithms Data Table: This data table

consist of average time take by participants to answer the number algorithm

snippet.

• Response time of Words Algorithms Data Table: This data table consist

of average time take by participants to answer the words algorithm snippet.

The above-mentioned tables will be presented in section 5.3 of this chapter. Along

with the responses to comprehension tasks, results from the transcripts of participant’s

audio which are recorded as part of the think-aloud protocol are also provided. The

audio recordings of the meeting sections are used to generate transcripts. A tool called

’otter’ is used to convert the audio files into text transcripts. This tool provided

various options to edit the text that is generated during the audio-to-text conversion.

The generated transcripts are cleaned to remove noise with the help of the otter.ai tool.

[61]

5.2 Hypothesis Testing

For this research, statistical analysis is essential to see whether the formulated data can

be tested to determine the significance value. Although the sample size is limited, this

statistical calculation can be used as a model for future studies in a similar research

domain [62].

The data tables in the section 5.3.1 i.e "Correctness of Numbers and Words Algorithms

Data Tables", "Response time of Numbers Algorithms Data Table" and "Response

time of words Algorithms Data Table" which represents the correctness of answers

provided by the participants and response time are used for statistical evaluation. The

hypotheses stated in the section 3.6 are tested for significance using the Mann-Whitney

U test. The results of the test are presented here:

• Correctness of answers: The data collected from 12 participants is used to

conduct the test. The difference in the correctness of answers presented by the

Chapter 5. Data Analysis and Results 56

participants are tested against numbers and words algorithms is tested. This

test is to answer the research question one RQ1. The results of the test are as

following: U-value = 72, UCritical = 37 at a significance value ↵ = 0.05, Z-Score

= 0.02887 and p-Value = 0.97606. The U-value is greater than UCritical which

implies the null hypothesis H0(1) is accepted. The results state the there is no

difference in the correctness of answers for numbers and words algorithms.

• Response Time: The response time of twelve participants is used to test the

hypothesis. The difference in the response time of the participants for numbers

and words algorithms is tested. The hypothesis formulated for the research

question RQ2 is tested. The test resulted in the following results: U-value = 62,

UCritical = 37 at a significance value ↵ = 0.05, Z-Score = -0.54848 and p-Value

= 0.58232. The U-value is greater than UCritical that implies the null hypothesis

H0(2) is accepted i.e there is no difference in the response time for numbers and

words algorithms.

5.3 Results

In this section, the result set is explained in detail and also the insights obtained from

data analysis are provided. Appropriate conclusions can be drawn from the results

obtained by the implementation of the study. Based on formulated data sets it can

be assumed that the resulting data is satisfactory. Any potential inaccuracies in the

results will be discussed, but that is a topic for the next chapter, which will address

the possible inaccuracies and logical errors to justify.

This section is divided in to two subsections as listed below:

• The first subsection explains the data in the formulated data tables.

• The second subsection will provide the visual representation of the results.

Chapter 5. Data Analysis and Results 57

5.3.1 Data

The data generated as a result of the experiment is interpreted in a way that shows

valuable insights which help answer the research question. As mentioned in section

5.1 the data collected for the survey is formulated into a table. These data would

help in justifying the research questions. The data from the different data tables are

interpreted as follows:

• Correctness of Numbers and Words Algorithms Data Table: This data

table presents the total number of correct answers provided by the participants

for questions related to numbers and words algorithms. It can be seen in the

figure 5.1, out of twenty four responses a total of twenty two correct responses

are provided by the participants and the total number of correct answers accounts

for 91.6 percent.

Figure 5.1: Data table showing the number of correct answers provided by participants for

each algorithm

.

• Response time of Numbers Algorithms Data Table: This table consist of

information regarding the average time take by the participants to respond to

the each numbers algorithm. The figure 5.2 shows that an average of 291 seconds

are taken by the participants to answer each numbers algorithm.

Chapter 5. Data Analysis and Results 58

Figure 5.2: Data table showing the average time taken by the participants to answer each

numbers algorithm

.

• Response time of Words Algorithms Data Table: This table consists of

information regarding the average time taken by the participants to solve words

algorithms. It can be seen in the figure 5.3 an average of 294 seconds are taken

by the participants to answer each words algorithm.

Figure 5.3: Data table showing the average time taken by the participants to answer each

words algorithm

.

Apart from the responses to the questionnaire i.e response to the comprehension tasks

and demographic questions the other important data source from the survey is the

transcripts of the participants audio. As mentioned in the section 4.2 after each survey

a short interview is conducted, in which participants are asked few questions about

various aspects of the task that they have solved. Below is the summary of the results

that are gathered from the transcripts developed using audio files.

Chapter 5. Data Analysis and Results 59

The following insights are obtained from reading the transcripts produced from the

audio of the participants:

• As soon as the participants saw the code snippets, they began looking at

the names of the identifiers, functions, and classes to find out how the code

snippet worked. All of the participants were looking for function calls, variable

declarations, the function’s return type, and the function body at first glance and

were vaguely going over the entire snippet, and once they had that detail, they

began going over the function body, loops, and statements in the function body.

All the participants have taken this approach.

• Participants with prior java programming experience were able to complete the

loops and statements much more quickly and easily than those with little or no

prior experience.

• Participants with less experience went through the snippets line by line, while

those with more experience were able to skip certain loops and correctly answer

the questions. Also, experienced participants took less time to comprehend the

snippet than those with no or limited experience.

• The way the participants attempted to solve the number and word algorithms

(code snippets in the survey) were identical. To solve the number and word

algorithms, they used the same method as mentioned above.

The participants answers to the questions listed in section 4.2 are given here as part

of their response to the short interview questions after the survey:

1. When you first saw an algorithm, what drew your attention? All the

participants responded that the class name, function name, function return type,

identifier name caught their eye at the first glance.

2. Did the names of the variables, functions, and class name helped you

to figure out what the algorithm is about? All the participants mentioned

that the names of the class, functions, and identifiers are meaningfully and

Chapter 5. Data Analysis and Results 60

self-explanatory and they could guess what the algorithm is about even before

completely going through the algorithm.

3. Did you find any similarities in the algorithms? Almost all of the

participants were able to determine that the first and last algorithms are identical,

with the exception that one algorithm works with an integer array and the other

with a string array. One participant was unable to find the similarities but was

able to recall solving similar algorithms when both the algorithms were shown

side by side.

4. Did it make a difference to you if the algorithm used integers or strings?

Eleven participants said that they were concentrated on the logic and the control

flow of the algorithm they are working with rather than the integer array and

the string array. one participant mentioned that it is important to him whether

it is an integer or a word that he is working with but the approach he employed

to solve the two identical algorithms was same.

5. Was your approach to solve numbers and words algorithms different?

All the participants said that they used the same approach to solve both numbers

and words algorithms as they are identical.

5.3.2 Data Visualization

The data tables presented in the previous section are used to generate the bar chats

to visualize the consolidated data. These tables provide information regarding the

correctness of answers provided by the participants and also the time take by the

participants to respond to the code snippets. This section presents the combination of

these tables in the form of bar charts with the results for numbers and words algorithms

side by side.

The chart "Total number of correct answers for each numbers and words algorithm"

is a combination of "Correctness of Numbers and Words Algorithms Data Table".

Chapter 5. Data Analysis and Results 61

The x-axis representing the algorithms, the bar with blue color represents the total

number of correct answers provided by the participants for that particular algorithm

similarly the orange color bar represents the words algorithm. The y-axis represents

the number of correct responses. As it can be seen in the figure 5.4 the algorithm

"ArrayAverage" is answered correctly six times, three for numbers algorithm, and three

for words algorithm. The rest of the two algorithms are answered eight times correctly,

four for numbers algorithm and four for words algorithm.

Figure 5.4: The bar chart showing total number of correct answers provided by the

participants for each words and numbers algorithm

.

The chart "Number of correct answers for numbers Vs. words algorithms" shown in

the figure 5.5 is directly derived from the chart shown in the figure 5.4. The y-axis

represents the number of responses and the x-axis represents the numbers and words

algorithms. This chart represents the total number of correct responses provided by

the participants for numbers and words algorithms. Out of twenty-four responses,

twenty-one responses are correct, eleven responses of numbers algorithms, and eleven

responses of words algorithms.

Chapter 5. Data Analysis and Results 62

Figure 5.5: The bar chat representing the total number of correct answers for all numbers

and words algorithms

.

The figure 5.6 is the chart "Average response time for each numbers and words

algorithm". This chart is designed to represent the data in the figures 5.2 and 5.3. This

chart provides the average time taken by the participant to respond to each numbers

and words algorithm. On the x-axis are the algorithms, the blue bar represents the

average time taken to respond to numbers algorithm and the orange bar represents the

average time taken to respond to the words algorithm. On the y-axis time in seconds

is presented. It can be seen in the figure 5.6 that there are slight differences in the

response time of about 40 seconds in the "ArrayAverage" algorithm, a difference of

about 30 seconds in the "ClosestValue" algorithm, and a negligible difference in the

"RemoveDuplicates" algorithm.

Chapter 5. Data Analysis and Results 63

Figure 5.6: The chart shows the average time take by the participants to respond to each

numbers and words algorithm

.

Figure 5.7 represents the chart "Average response time for numbers Vs. words

algorithms". This chart is derived from the chart "Average response time for each

numbers and words algorithm". The chart in the figure 5.6 present the average time to

solve each algorithm whereas the chart "Average response time for numbers Vs. words

algorithms" presents the total average time for numbers and words algorithms. The

blue bar represents the average response time for numbers algorithms and the orange

bar represents the average response time for words algorithms. The numbers on the

y-axis represent time in seconds. From the chart, it can be observed that there is a

negligible difference in the response time for numbers and words algorithms.

Figure 5.7: The bar chart presenting the average response time for all the numbers

algorithms Verses words algorithms

.

64

Chapter 6

Discussion

In this chapter, the summary of the results and the important points of discussion

that arose during the implementation and the data collection phase of this study are

presented.

The data presented in the previous chapter showed that there is no difference in

the correctness of answers provided by the participants to the numbers and words

algorithms with identical programming logic. A total of twenty-four questions were

answered by participants in a survey, each participant has to answer a questionnaire

that presents a numbers algorithm and a words algorithm of similar logic. So out

of twelve answers to the numbers algorithms, eleven answers are correct and this

corresponds to 91.6 percent. Similarly, for words algorithms eleven out of twelve

responses were correct. These results can be seen in the figures 5.5 and 5.4. The

Mann-Whitney U test used to test the significance shows that there is no difference in

the correctness for numbers and words algorithms.

The data in the previous chapter suggested that there is no difference between numbers

and words algorithms with identical programming logic in terms of their response time.

The Mann-Whitney U test also indicates the same, there is no difference in the response

time for numbers and words algorithms.

The results for the interview conducted at the end of the survey and the transcripts

from the participants audio recordings as part of the think-aloud protocol also showed

no difference in participants approach in solving the words and numbers algorithms.

Chapter 6. Discussion 65

The data from the transcripts indicate that the participants are more focused on

understanding the snippets with the help of beacons present in the snippets. All the

participants followed the same way to understand the numbers and words algorithms.

A think-aloud protocol is used to understand the participants approach to solve the

algorithms, though it served as an important tool to observe participants behavior

during comprehension and the transcripts generated as part of this was useful

conclude about participants approach, it would be difficult to say whether there are

any differences in other cognitive processes of participants for numbers and words

algorithms. An exception case is observed in the data set, out of twelve participants,

one stated that there is a difference in thought process while working with words and

numbers, while working with words an extra calculation had to be performed like

finding the length of the string. Other participants mentioned as the algorithms are

identical, there are no differences in their thought process for words and numbers.

The snippets are present to the participants in a random manner, the participants

took more time to respond to the first snippet than the last snippet, this might be

because participants getting adjusted to the survey environment, to overcome such

effects on the collected data six participants are presented with numbers algorithm at

the beginning of the questionnaire followed by the words algorithm. The other six

participants are presented with words algorithm first and numbers algorithm next.

6.1 Threats to validity

Threats validity are concerns that must be addressed in the study in order to justify

any inaccuracies found. The following are the threats to validity:

• The survey was sent to a group of Computer Science students with varying levels

of programming experience, making it difficult to assess the accurate skills of

those who responded. As a result, internal validity might get afflicted.

Chapter 6. Discussion 66

• The participant’s demographic and experience data was not particularly

important for this study; it was merely collected to observe the distribution of

data. The external validity could be affected as a result of this.

• The responses of the three participants are not taken into account for the

assessment in order to prevent mistakes and inaccuracies caused by the

participants’ carelessness. Internal validity could be harmed as a result of this

issue.

• There is a slight difference between the numbers and words algorithms the words

algorithms have an extra method to find the length of a string. This difference

might affect the internal validity.

• Given the nature of the study, the small data set collected did not appear to be

sufficient to generate conclusive evidence. But it was adequate to test results

against research questions and hypotheses.

• The participants may not say all about what they are thinking while

comprehending the numbers and words algorithms this may harm the internal

validity.

• Participants are asked to express themselves verbally during the survey. Some of

the participants needed to be told that they needed to express themselves clearly

and loudly. These interruptions can have a minor effect on the participants

thinking processes.

67

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Program comprehension is a broad topic that encompasses a wide range of possibilities

for research. The main focus of program comprehension has been on a better

understanding of programmers. A variety of objectives were studied by applying

various research approaches and strategies over the past three decades. This study is an

attempt to understand the behavior of programmers for different programming setups.

The objective of this thesis is to study the differences in programmers behavior while

they are comprehending the numbers and words algorithms. The research question

posed in section 1.2 is answered based on the data obtained from a random set of

participants with a different level of experience in the field of Computer Science.

1. Does the correctness of programmers differ for numbers and words algorithms?

The result set and the statistical test results show that there is no difference in

the correctness of programmers for numbers and words algorithms.

2. Does the response time of programmers differ numbers and words algorithms?

No difference in the participants response time for numbers and words algorithms

is observed in the result set and the statistical test results.

Thus the study can be concluded by stating that the study’s findings show no difference

in programmers behavior for identical numbers and words algorithms.

Chapter 7. Conclusion and Future Work 68

7.2 Future work

This chapter provides an overview of the future work that can be carried out related

to this study. In this thesis work, the difference in comprehension of numbers and

words programs is explored. The difference in terms of correctness and response time

are studied in this thesis work for this online survey and the think-aloud protocol

is used to gather responses from the programmers. This experiment served well for

the intended research, in future research on this topic there is a scope for the use

of technology to better understand the difference in comprehension of numbers and

words programs. With the inclusion of the new technology in a similar experimental

setup precise results can be expected. Along with the technology, the study can be

conducted with more participants, for a longer duration, and with large programs to

produce large result data sets. As a result, the research hypotheses can be backed up

by a large number of responses.

The following are some of the suggestions for future research:

• Eye-tracking technology can be used for the same experiment design with more

participants to produce more accurate and conclusive evidence. The reading

patterns of programmers for numbers and words algorithms can also be accurately

recorded with the help of eye-tracking.

• A combination of eye-tracking and fMRI can be used to study the differences in

the cognitive process of programmers for numbers and words algorithms.

• "Recall" program comprehension measure can be used with the same type of

question asked in the survey to find the differences in programmers behavior for

words and numbers algorithms.

69

Bibliography

[1] Siegmund, Janet and Jana Schumann. “Confounding parameters on program
comprehension: a literature survey”. In: Empirical Software Engineering 20.4
(2015), pp. 1159–1192. issn: 1573-7616.

[2] Peitek, Norman, et al., ed. Simultaneous measurement of program comprehension
with fmri and eye tracking: A case study. 2018.

[3] Siegmund, Janet, ed. Program comprehension: Past, present, and future. IEEE,
2016. isbn: 1509018557.

[4] Siegmund, Janet, et al., ed. Understanding understanding source code with
functional magnetic resonance imaging. 2014.

[5] M-A. Storey, ed. Theories, methods and tools in program comprehension: past,
present and future. IEEE, 2005. isbn: 0769522548.

[6] Amela Karahasanović et al. “Comparing of feedback-collection and think-aloud
methods in program comprehension studies”. In: Behaviour & Information
Technology 28.2 (2009), pp. 139–164. issn: 0144-929X.

[7] Biggerstaff, Ted J., Bharat G. Mitbander and Dallas Webster., eds. The concept
assignment problem in program understanding. IEEE, 1993. isbn: 0818637803.

[8] Matúš. Sulír, ed. Program comprehension: A short literature review. 2015.
[9] Siegmund, Janet et al. “Experience from measuring program

comprehension-toward a general framework”. In: Software Engineering 2013
(2013). issn: 38857960.

[10] Ben Shneiderman. “Exploratory experiments in programmer behavior”. In:
International Journal of Computer & Information Sciences 5.2 (1976),
pp. 123–143. issn: 1573-7640.

[11] Nancy Pennington. “Stimulus structures and mental representations in expert
comprehension of computer programs”. In: Cognitive psychology 19.3 (1987),
pp. 295–341. issn: 0010-0285.

[12] Ben Shneiderman. “Human factors in computer and information systems”. In:
Cambridge, MA: Winthrop (1980).

[13] Elliot Soloway and Kate Ehrlich. “Empirical studies of programming knowledge”.
In: IEEE Transactions on Software Engineering 5 (1984), pp. 595–609. issn:
0098-5589.

[14] Alastair Dunsmore and Marc Roper. “A comparative evaluation of program
comprehension measures”. In: The Journal of Systems and Software 52.3 (2000),
pp. 121–129.

[15] Wilhelm Max Wundt. Grundzüge der physiologischen Psychologie. W. Engelman,
1874.

[16] John R. Anderson. “Methodologies for studying human knowledge”. In:
Behavioral and Brain Sciences 10.3 (1987), pp. 467–477. issn: 1469-1825.

Bibliography 70

[17] Stanley Letovsky. “Cognitive processes in program comprehension”. In: Journal
of Systems and software 7.4 (1987), pp. 325–339. issn: 0164-1212.

[18] Anneliese von Mayrhauser and Stephen Lang. “A coding scheme to support
systematic analysis of software comprehension”. In: IEEE Transactions on
Software Engineering 25.4 (1999), pp. 526–540. issn: 0098-5589.

[19] Teresa M. Shaft and Iris Vessey. “The relevance of application domain knowledge:
The case of computer program comprehension”. In: Information systems research
6.3 (1995), pp. 286–299. issn: 1047-7047.

[20] Anneliese von Mayrhauser and A. Marie Vans, eds. From program comprehension
to tool requirements for an industrial environment. IEEE, 1993. isbn: 0818640421.

[21] Janet Hughes and Steve Parkes. “Trends in the use of verbal protocol analysis
in software engineering research”. In: Behaviour & Information Technology 22.2
(2003), pp. 127–140. issn: 0144-929X.

[22] David C. Littman et al. “Mental models and software maintenance”. In: Journal
of Systems and software 7.4 (1987), pp. 341–355. issn: 0164-1212.

[23] Ben Shneiderman. “Measuring computer program quality and comprehension”.
In: International journal of man-machine studies 9.4 (1977), pp. 465–478. issn:
0020-7373.

[24] Robert S. Rist, ed. Plans in programming: definition, demonstration, and
development. 1986.

[25] Riston Tapp and Rick Kazman, eds. Determining the usefulness of colour and
fonts in a programming task. IEEE, 1994. isbn: 0818656476.

[26] Paul W. Oman and Curtis R. Cook. “Typographic style is more than cosmetic”.
In: Communications of the ACM 33.5 (1990), pp. 506–520. issn: 0001-0782.

[27] Siegmund, Janet. “Framework for measuring program comprehension”. In: (2012).
[28] Anneliese von Mayrhauser and A. Marie Vans. “Program comprehension during

software maintenance and evolution”. In: Computer 28.8 (1995), pp. 44–55. issn:
0018-9162.

[29] Elliot Soloway, Beth Adelson, and Kate Ehrlich. “Knowledge and processes in
the comprehension of computer programs”. In: The nature of expertise (1988),
pp. 129–152.

[30] Anneliese von Mayrhauser and A. Marie Vans., eds. Comprehension processes
during large scale maintenance. IEEE, 1994. isbn: 081865855X.

[31] Ben Shneiderman and Richard Mayer. “Syntactic/semantic interactions in
programmer behavior: A model and experimental results”. In: International
Journal of Computer & Information Sciences 8.3 (1979), pp. 219–238. issn:
1573-7640.

[32] Ruven Brooks. “Towards a theory of the comprehension of computer programs”.
In: International journal of man-machine studies 18.6 (1983), pp. 543–554. issn:
0020-7373.

[33] J. W. Belliveau et al. “Functional mapping of the human visual cortex by
magnetic resonance imaging”. In: Science 254.5032 (1991), pp. 716–719. issn:
0036-8075.

[34] Korbinian Brodmann. Brodmann’s: Localisation in the cerebral cortex. Springer
Science & Business Media, 2007. isbn: 0387269193.

[35] Siegmund, Janet, et al., ed. Measuring neural efficiency of program
comprehension. 2017.

Bibliography 71

[36] Keith Rayner. “Eye movements in reading and information processing”. In:
Psychological bulletin 85.3 (1978), p. 618. issn: 1939-1455.

[37] Päivi Majaranta and Andreas Bulling. “Eye tracking and eye-based
human–computer interaction”. In: Advances in physiological computing. Springer,
2014, pp. 39–65.

[38] Kenneth Holmqvist et al. Eye tracking: A comprehensive guide to methods and
measures. OUP Oxford, 2011. isbn: 0191625426.

[39] Busjahn, Teresa, et al, ed. Eye movements in code reading: Relaxing the linear
order. IEEE, 2015. isbn: 1467381594.

[40] Sharif, Bonita, and Huzefa Kagdi., ed. On the use of eye tracking in software
traceability. 2011.

[41] Dag I. K. Sjøberg et al. “A survey of controlled experiments in software
engineering”. In: IEEE Transactions on Software Engineering 31.9 (2005),
pp. 733–753. issn: 0098-5589.

[42] Sharafi, Zohreh, et al., ed. Eye-tracking metrics in software engineering. IEEE,
2015. isbn: 1467396443.

[43] Martha E. Crosby and Jan Stelovsky. “How do we read algorithms? A case study”.
In: Computer 23.1 (1990), pp. 25–35. issn: 0018-9162.

[44] Zohreh Sharafi, Zéphyrin Soh, and Yann-Gaël Guéhéneuc. “A systematic
literature review on the usage of eye-tracking in software engineering”. In:
Information and Software Technology 67 (2015), pp. 79–107. issn: 0950-5849.

[45] Unaizah Obaidellah, Mohammed Al Haek, and Peter C-H Cheng. “A survey
on the usage of eye-tracking in computer programming”. In: ACM Computing
Surveys (CSUR) 51.1 (2018), pp. 1–58. issn: 0360-0300.

[46] Crosby, Martha E., Jean Scholtz, and Susan Wiedenbeck., ed. The Roles Beacons
Play in Comprehension for Novice and Expert Programmers. Citeseer, 2002.

[47] Bednarik, Roman, and Markku Tukiainen., ed. An eye-tracking methodology for
characterizing program comprehension processes. 2006.

[48] Busjahn, Teresa, Carsten Schulte, and Andreas Busjahn., ed. Analysis of code
reading to gain more insight in program comprehension. 2011.

[49] Sharafi, Zohreh, et al., ed. Women and men—different but equal: On the impact
of identifier style on source code reading. IEEE, 2012. isbn: 1467312169.

[50] Busjahn, Teresa, Roman Bednarik, and Carsten Schulte., ed. What influences
dwell time during source code reading? Analysis of element type and frequency as
factors. 2014.

[51] Peitek, Norman, et al. “A look into programmers’ heads”. In: IEEE Transactions
on Software Engineering 46.4 (2018), pp. 442–462. issn: 0098-5589.

[52] Duraes, João, et al., ed. WAP: understanding the brain at software debugging.
IEEE, 2016. isbn: 146739002X.

[53] Fritz, Thomas, et al., ed. Using psycho-physiological measures to assess task
difficulty in software development. 2014.

[54] Fakhoury, Sarah, et al, ed. The effect of poor source code lexicon and readability
on developers’ cognitive load. IEEE, 2018. isbn: 1450357148.

[55] T. Kluthe. “A measurement of programming language comprehension using
p-BCI: An empirical study on phasic changes in alpha and theta brain Waves”.
In: Master’s thesis, Southern Illinois University Edwardsville, Edwardsville, IL,
USA (2014).

Bibliography 72

[56] B. Chance et al. “Cognition-activated low-frequency modulation of light
absorption in human brain”. In: Proceedings of the National Academy of Sciences
90.8 (1993), pp. 3770–3774. issn: 0027-8424.

[57] SoSci Survey the Professional Solution for Your Online Survey. https://www.
soscisurvey.de/. (Accessed on 04/24/2021).

[58] Open Broadcaster Software | OBS. https://obsproject.com/. (Accessed on
04/24/2021).

[59] Mann–Whitney U test - Wikipedia. https://en.wikipedia.org/wiki/Mann-
Whitney_U_test. (Accessed on 04/24/2021).

[60] (7) How To... Perform the Mann-Whitney U Test (By Hand) - YouTube. https:
//www.youtube.com/watch?v=BT1FKd1Qzjw&ab_channel=EugeneO. (Accessed
on 04/24/2021).

[61] Otter Voice Meeting Notes - Otter.ai. https : / / otter . ai/. (Accessed on
04/24/2021).

[62] Understanding Hypothesis Tests: Significance Levels (Alpha) and P values in
Statistics. https://blog.minitab.com/en/adventures- in- statistics-

2/understanding-hypothesis-tests-significance-levels-alpha-and-

p-values-in-statistics#:~:text=Thesignificancelevel-alsodenoted,

thereisnoactualdifference.. (Accessed on 04/24/2021).

73

Appendix A

Questionnaire

This section presents a completed sample questionnaire used to gather the responses

from the participants. All the snippets used in this study are provided in the

CD attached to this thesis report. The transcripts that are generated from the

audio recordings are provided in the remote repository. Here is the link to the

repository that contains the transcripts generated as part of think-aloud study

"https://github.com/Anirudh-Adavalli/Think-AloudStudyTranscript”.

Figure A.1: This is the first page in the questionnaire asking for the participants consent

.

Appendix A. Questionnaire 74

Figure A.2: This is the first comprehension task and is a numbers algorithm

.

Appendix A. Questionnaire 75

Figure A.3: Comprehension task two: This is an algorithm to distract the participants

.

Appendix A. Questionnaire 76

Figure A.4: Comprehension task three: This is an algorithm to distract the participants

.

Appendix A. Questionnaire 77

Figure A.5: This is the last comprehension task in the questionnaire, a words algorithm

identical to the algorithm in the first task.

.

Appendix A. Questionnaire 78

Figure A.6: Demographic questions

.

Appendix A. Questionnaire 79

Figure A.7: Experience and Skill questions

.

